§761.260 unsampled segment has the same PCB surface concentration as the nearest sampled pipe segment. - (2) If an unsampled pipe segment is equidistant between two pipe segments which have been sampled, assume the PCB surface concentration of the unsampled segment to be the arithmetic mean of the PCB surface concentrations measured in the two equidistant, sampled, pipe segments. - (b) For purposes of abandonment of a pipeline section, assume that the PCB surface concentration for an entire pipeline section is the arithmetic mean of the PCB surface concentrations measured at the ends of the pipeline section. If additional representative samples were taken in a pipeline section, assume that the PCB surface concentration for the entire pipeline section is the arithmetic mean of the concentrations measured in all representative samples taken. - (c) For purposes of removal for disposal under \$761.60(b)(5)(ii)(A)(1) or abandonment under \$761.60(b)(5)(ii)(B), if the surface PCB concentration of a pipe segment, determined by direct measurement or in accordance with paragraph (a) of this section, or of a pipeline section as determined in accordance with paragraph (b) of this section, is >10 $\mu g/100~cm^2$, but <100 $\mu g/100~cm^2$, then that segment or section is PCB-Contaminated. # Subpart N—Cleanup Site Characterization Sampling for PCB Remediation Waste in Accordance with §761.61(a)(2) SOURCE: 63 FR 35464, June 29, 1998, unless otherwise noted. #### § 761.260 Applicability. This subpart provides a method for collecting new data for characterizing a PCB remediation waste cleanup site or for assessing the sufficiency of existing site characterization data, as required by §761.61(a)(2). ## § 761.265 Sampling bulk PCB remediation waste and porous surfaces. (a) Use a grid interval of 3 meters and the procedures in §§761.283 and 761.286 to sample bulk PCB remediation waste that is not in a container and porous surfaces. - (b) Use the following procedures to sample bulk PCB remediation waste that is in a single container. - (1) Use a core sampler to collect a minimum of one core sample for the entire depth of the waste at the center of the container. Collect a minimum of 50 cm³ of waste for analysis. - (2) If more than one core sample is taken, thoroughly mix all samples into a composite sample. Take a subsample of a minimum of 50 cm³ from the mixed composite for analysis. - (c) Use the following procedures to sample bulk PCB remediation waste that is in more than one container. - (1) Segregate the containers by type (for example, a 55-gallon drum and a roll-off container are types of containers). - (2) For fewer than three containers of the same type, sample all containers. - (3) For more than three containers of the same type, list the containers and assign each container an unique sequential number. Use a random number generator or table to select a minimum of 10 percent of the containers from the list, or select three containers, whichever is the larger. - (4) Sample the selected container(s) according to paragraph (b) of this section. ## § 761,267 Sampling non-porous surfaces. - (a) Sample large, nearly flat, non-porous surfaces by dividing the surface into roughly square portions approximately 2 meters on each side. Follow the procedures in §761.302(a). - (b) It is not necessary to sample small or irregularly shaped surfaces. ### § 761.269 Sampling liquid PCB remediation waste. - (a) If the liquid is single phase, collect and analyze one sample. There are no required procedures for collecting a sample. - (b) If the liquid is multi-phasic, separate the phases, and collect and analyze a sample from each liquid phase. There are no required procedures for collecting a sample from each single phase liquid. #### **Environmental Protection Agency** (c) If the liquid has a non-liquid phase which is >0.5 percent by total weight of the waste, separate the non-liquid phase from the liquid phase and sample it separately as a non-liquid in accordance with §761.265. ## § 761,272 Chemical extraction and analysis of samples. Use either Method 3500B/3540C or Method 3500B/3550B from EPA's SW-846, Test Methods for Evaluating Solid Waste, or a method validated under subpart Q of this part, for chemical extraction of PCBs from individual and composite samples of PCB remediation waste. Use Method 8082 from SW-846, or a method validated under subpart Q of this part, to analyze these extracts for PCBs. ## § 761.274 Reporting PCB concentrations in samples. (a) Report all sample concentrations for non-liquid PCBs on a dry weight basis as micrograms of PCBs per gram of sample (ppm by weight). Report surface sampling results as $\mu g/100~cm^2$. Divide 100 cm² by the surface area and multiply this quotient by the total number of micrograms of PCBs on the surface to obtain the equivalent measurement of micrograms per 100 cm². (b) Report all sample concentrations for liquid PCBs on a wet weight basis as micrograms of PCBs per gram of sample (ppm by weight). #### Subpart O—Sampling To Verify Completion of Self-Implementing Cleanup and On-Site Disposal of Bulk PCB Remediation Waste and Porous Surfaces in Accordance With § 761.61(a)(6) SOURCE: 63 FR 35465, June 29, 1998, unless otherwise noted. #### § 761.280 Application and scope. Follow the procedures in this subpart when sampling to verify completion of the cleanup for self-implementing, onsite disposal of bulk PCB remediation waste and porous surfaces consistent with the levels of §761.61(a)(4)(i) and (iii). The objective of this subpart is not to search for new contamination. Confirmation of compliance with the cleanup levels in §761.61(a)(4) is only verifiable for the area sampled in accordance with this subpart. Do not make conclusions or extrapolations about PCB concentrations outside of the area which has been cleaned up and verified based on the results of this verification sampling. ## § 761.283 Determination of the number of samples to collect and sample collection locations. This section addresses how to determine the number of samples to collect and sample collection locations for bulk PCB remediation waste and porous surfaces destined to remain at a cleanup site after cleanup. (a) Minimum number of samples. (1) At each separate cleanup site at a PCB remediation waste location, take a minimum of three samples for each type of bulk PCB remediation waste or porous surface at the cleanup site, regardless of the amount of each type of waste that is present. There is no upper limit to the number of samples required or allowed. (2) This is an example of how to calculate the minimum number of required samples at a PCB remediation waste location. There are three distinct cleanup sites at this example location: a loading dock, a transformer storage lot, and a disposal pit. The minimum number of samples to take appears in parentheses after each type of waste for each cleanup site. The PCB remediation wastes present at the loading dock are concrete (three samples) and clay soil (three samples). The nonliquid PCB remediation wastes present at the transformer storage lot are oily soil (three samples), clay soil (three samples) and gravel (three samples). The PCB remediation wastes present at the disposal pit are sandy soil (three samples), clay soil (three samples), oily soil (three samples), industrial sludge (three samples), and gravel (three samples). (b) Selection of sample locations—general. (1)(i) Use a square-based grid system to overlay the entire area to be sampled. Orient the grid axes on a magnetic north-south line centered in